Salt fingers

Above is a computer simulation of a phenomenon often called salt fingers. They occur in world’s seas and oceans, for example they are common in the Caribbean. Salt fingers form when there is a layer of warm salty water above a layer of colder but less salty water. The point is that salty water is denser than less salty water, so typically a layer of salt water on top of a layer of fresher water is unstable, the denser layer on top falls down through the less dense layer below due to gravity — this is convection. However, here the water on top is not just saltier it is also warmer. This temperature difference works in the opposite direction to the difference in the amount of salt. Warmer water is less dense that cold water and so a layer of warm water floats on a layer of colder water.

Continue reading

What do an American Ivy League university and a Wetherspoons in Wrexham (Wales) have in common?

I currently have 50 reports, and two dissertations to mark, and on Thursday next week I’ll have not one but two exam papers to mark. So I am taking a break from the endless marking to share with you something surprising that I have learnt, not about science but about history. My sister bought me The Silk Roads by Peter Frankopan, for Christmas, and I am enjoying reading it. The book mentions the Ivy League (i.e., posh, presitigious and expensive) Yale university in the north east of the United State, although it omits the Elihu Yale Wetherspoons pub (i.e., pub that is not posh, lacks prestige but has cheap beer) in Wrexham in north east Wales.

Continue reading

Politely disagreeing with the BBC and a teacher

Artists at All City Coffee 25I am currently teaching biological physics to third-year physics undergraduates. As part of this I teach about how living organisms acquire food molecules, oxygen etc, and how large living organisms, such as ourselves, transport these food molecules, oxygen, etc around our bodies. A fundamental point that I make, is that diffusion is only fast enough to support the demands of life when the movement is over very small distances, around 1 mm or less. Over distances more than very roughly 1 mm, some sort of flow is required to move molecules around. Over distances of centimetres, metres and above, diffusion is very very slow.

Continue reading

Teaching data fitting better

One of the most useful skills we teach on the physics degree is data analysis. This is important in almost all scientific research, and it is also key to good decision making in other fields such as economics, as well as being a core part of data science — increasing numbers of our graduates are going into the growing number of careers as data scientists. One basic task in data analysis is fitting a model to noisy data, eg fitting a straight line y = mx + c to data of the form a set of points (x , y). As far as I know there is essentially complete consensus about how to determine the best values of the two fit parameters, the intercept  and the slope m. This is to minimise the sum of the squared differences between the fit function, and the data points.

Continue reading

From crisps to £800 skin cream

Traditionelle kartoffelchipsI have just gotten back from the 3rd Sir Sam Edwards – New Horizons in Soft matter meeting. The meeting has an emphasis on bringing together soft matter scientists from universities and companies. As a university-based scientist it is fascinating to hear of the soft matter challenges companies face.

These vary from turning tons of potatoes into crisps, to making cosmetics that are sold for silly money.

Continue reading

Eating for ten trillion

Adults are recommended to eat about 2000 kilocalories per day. As this is an energy divided by a time it is a power consumption, and in the proper units, it is about 100 Watts. The power consumption of our bodies is a pretty basic feature of how our bodies work, but there is not much known about why a 80 kg guy like me needs 100 W, not 10 or 1000 W. We know* our brain needs of order 10 W, and our heart about 1 W, but for example we have only a poor idea of why our brain burns through 10 Joules every second. Continue reading

A whole lot of gelatin

Over the summer I am thinking a bit about how proteins and other stuff move around inside our cells, and those of other living organisms. I am trying to do this quantitatively, and so I need numbers for various aspects of living cells and of organisms. So I was delighted to find that there is an entire searchable website just for numbers related to living organisms, called, sensibly enough, BioNumbers, plus a related book: Cell Biology by the Numbers, by Ron Milo and Rob Phillips. Both websites are a mine of useful information. For example, one entry is the total length of fibres of the protein collagen in our bodies. The total length is about 100 billion kilometres, or to put in another way, in each of our bodies there is enough collagen to go from the Earth to the Sun 10,000 times.

Continue reading